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1 Introduction

This paper develops a theory of money and credit as competing payment instru-

ments, then puts it to work in applications. This is a classic issue: as Lionel

Robbins put it in the Introduction to von Mises (1953), “Of all branches of eco-

nomic science, that part which relates to money and credit has probably the longest

history and the most extensive literature.”To bring it up to date, we use a New

Monetarist approach that involves taking the exchange/payment processes seri-

ously (Section 2 reviews the literature). Both cash and credit are used in the

model due to the venerable idea that the former is subject to the inflation tax

while the latter involves transaction costs.1 We consider both fixed and variable

transaction costs, which turn out to work rather differently, with a variable cost

outperforming a fixed cost in terms of theory and data.

An important ingredient is what Burdett and Judd (1983) call “noisy”search,

which means sellers post prices, and each buyer sees a random number of them.

This leads to a distribution of prices F (p), where any p in the nondegenerate

support yields the same profit —intuitively, lower-price sellers earn less per unit

but make it up on the volume. We integrate this into the model of money in

Lagos and Wright (2005), with alternating centralized and decentralized markets,

which is natural because at its core is an asynchronization of expenditures and

receipts crucial for any analysis of money or credit. In the centralized market

agents consume, work, adjust their cash balances and settle their accounts. In

the decentralized market they trade different goods, as in Burdett-Judd, but with

payment frictions: since buyers have no goods or services to offer by way of quid

pro quo, they must use cash or credit. Consistent with conventional wisdom, they

tend to use credit for large and cash for small expenditures.

1We need such a device to get both money and credit into general equilibrium in a nontrivial
way. Gu et al. (2016) prove this: if credit conditions are loose, money cannot be valued; if credit
is tight, money can be valued but then credit is not essential and changes in credit conditions
are neutral. Here transaction costs get around that result.
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Costly credit implies a simple demand for money and avoids an indeterminacy

that plagues similar models (see below). We also generate endogenous nominal

stickiness. To see how, note that sellers post prices in dollars, since this is a

monetary model. As the money supply M increases, F (p) shifts so that the real

distribution stays the same, but as long as it does not shift too much some firms can

keep the same p. Hence prices look sticky, even though sellers can always adjust

at no cost. For a seller that sticks to p when M rises, his real price falls, but the

probability of a sale increases, and so changing p is simply not profitable. While

Head et al. (2012) and others make similar points, we avoid a technical problem in

that approach. Also, while their model can match some features of price-change

behavior quantitatively, we go further by matching these features plus micro data

on payment methods and macro data on money demand.2

In another application, we find small effects of inflation on welfare —e.g., elim-

inating π = 10% inflation is worth only 0.23% of consumption in the baseline

setting, where the impact comes mainly from impinging on the cash-credit mar-

gin. Even in an extension with endogenous participation, where π affects output

directly, the welfare effect is smaller than similar models discussed below. One

reason is that we use posting instead of bargaining; another is that our agents can

substitute between cash and credit. We also analyze the impact of π on markups

and price dispersion. And we study different specifications for the process by which

buyers sample prices. Additionally, we describe nonstationary equilibria, where in-

flation and deflation arise as self-fulfilling prophecies. For this, we use standard

tools, but in terms of substance, we get dynamics in the price distribution, not

just the price level.3 Finally, we deliver closed-form solutions for money demand

2As is standard, by money demand we mean the relationship between real balances and
nominal interest rates. Head et al. (2012) have no credit, and hence cannot match the micro
data, and do not match money demand at all well. Earlier related work like Caplin and Spulber
(1987) or Eden (1994) do not go to the data. So, while we are not the first to think about sticky
prices in this way, we try to make a novel quantitative contribution.

3Kaplan and Menzio (2016) introduce Burdett-Judd frictions in the product market. In the
continuous-time limit of their discrete-time model, they also generate dynamics in an entire price
distribution.
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reminiscent of Baumol-Tobin, but in general equilibrium.

Quantitatively, our fixed-cost specification can match standard money demand

observations, but not these plus the money-credit shares in the payment data. Our

proportional-cost specification can match both. Either specification is consistent

with the salient price-change facts, including long durations, large average changes,

many small changes, many negative changes, a decreasing hazard, and adjustment

behavior that depends on inflation. Although we match these facts reasonably

well, the fit is not perfect due to the discipline imposed by other observations;

without this discipline —e.g., if we give up on money demand —the model matches

price-change data virtually perfectly. However, we think any theory attempting

to match the price-change facts should also confront the other facts, since they

all pertain to monetary phenomena and all have implications for monetary policy.

We try to match the observations simultaneously.

The rest of the paper is organized as follows. Section 2 reviews the literature.

Section 3-4 describe the model and stationary equilibrium. Section 5 discusses

calibration. Section 6 presents applications. Section 7 concludes.

2 Literature

There is related work in several areas. New Monetarist papers are surveyed gener-

ally in Lagos et al. (2016), but particular models that use Burdett-Judd pricing are

Head et al. (2012) and Wang (2016), who embed it in Lagos and Wright (2005),

and Head and Kumar (2005) and Head et al. (2010), who embed it in Shi (1997).

However, there is a technical problem with indivisible goods and price posting,

as in Burdett-Judd, in monetary economies: it leads to an indeterminacy (i.e., a

continuum) of stationary equilibria.4 The papers get around this by assuming di-

4This comes up in a series of papers spawned by Green and Zhou (1998). See Jean et al. (2010)
for citations and more discussion, but here is a simple version of the problem: If all sellers post
p then buyers’best response is to bring m = p dollars to the market as long as p is not too high.
If all buyers bring m then sellers’best response is p = m as long as m is not too low. Hence, any
p = m in some range is an equilibrium.
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visible goods, but then another problem arises —what should firms post? They

assume linear menus, where sellers set p and let buyers choose any q as long as they

pay pq, but that is not generally a profit maximizing strategy, which seems like a

serious issue. Here, with costly credit, the indeterminacy problem with indivisible

goods goes away, so we can avoid the ad hoc assumption of linear menus.

Intuitively, holding more cash reduces the amount of costly credit buyers ex-

pect to use, which delivers a well-behaved money demand function and a unique

equilibrium with money and credit. While we do not take a stand on whether

divisible or indivisible goods are more realistic, indivisibility is an assumption on

the physical environment, preferable to a restriction on pricing strategies. Also

note the indeterminacy in question concerns stationary equilibria, not dynamic

equilibria, which are discussed in Section 6.4. In any case, despite these technical

differences, we share with Head et al. (2012) the goal of analyzing pricing without

imposing menu costs (e.g., Mankiw 1985), letting sellers only change at exoge-

nous points in time (e.g., Taylor 1980; Calvo 1983), or assuming inattention (e.g.,

Woodford 2002; Sims 2003). While those devices are interesting, we want to see

how far we can go without them. In spirit, Caplin and Spulber (1987) and Eden

(1994) take a similar approach, but they do not use microfoundations the way we

do here. Burdett and Menzio (2016) combine search and menu costs, which makes

the analysis much more diffi cult, but they are able to show the following: when

menu costs become small, their equilibrium converges to the one studied here.5

On empirical work, Bils and Klenow (2004) find half the prices in BLS data last

less than 4.3 months, or 5.5 months excluding sales. Klenow and Kryvtsov (2008)

report durations from 6.8 to 10.4 months. Nakamura and Steinsson (2008) report 8

to 11 months. Those papers also find large fractions of small and negative changes,

plus evidence of a decreasing hazard. Other work is surveyed by Klenow and Malin

5Other (nonmonetary) search models with menu costs include Benabou (1988, 1992a) and
Diamond (1993). Burstein and Helwig (2008) is also important, as it studies the cost of inflation
when prices are sticky, although for different reasons than the ones we emphasize.
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(2010), but for convenience we provide a summary of the many studies in Appendix

C. One issue for a menu cost approach is that average price changes are fairly big,

suggesting high menu costs, but there are also many small changes, suggesting low

costs. Midrigan (2011) explains this by firms selling multiple goods, where paying

a cost to change one price lets them change the rest for free (see also Vavra 2014).

We account for realistic durations, large average changes, many small and negative

changes, and repricing behavior that depends on inflation without such devices.

We get a decreasing hazard, which is problematic for other models (Nakamura

and Steinsson 2008), and price dispersion at low or no inflation, consistent with

evidence but not other models (Campbell and Eden 2014).6

As representative studies, Lucas (2000) and Cooley (1995) discuss the cost of

inflation using money-in-the-utility-function or cash-in-advance models. They find

eliminating an annual inflation of π = 0.10 is worth around 0.5% of consumption.

Among much other work, we mention Dotsey and Ireland (1996) and Aiyagari et

al. (1998) as related to our approach. In search-and-bargaining models, Lagos et

al. (2016) survey work that gets costs closer to 5.0%. Our findings are smaller,

for reasons explained below. On inflation and price dispersion, empirical findings

are mixed: Parsley (1996) and Debelle and Lamont (1997) find a positive relation;

Reinsdorf (1994) finds a negative relation; Caglayana et al. (2008) find a U-shaped

relation. On markups and inflation, a standard reference is Benabou (1992b), who

reports a small but significant negative relationship. Benabou (1992a) and Head

and Kumar (2005) explain this by inflation increasing dispersion and thus search

effort. Here inflation decreases markups by directly affecting the cash-credit choice.

On money demand, we get exact solutions similar to Baumol (1952), Tobin

6In discussions with people in the area, we found more or less agreement that these are the
facts: (1) Prices change slowly, but exact durations vary across studies. (2) The frequency and
size of changes vary across goods. (3) Two sellers changing at the same time do not typiclly pick
the same p̂. (4) Many changes are negative. (5) Hazards decline slightly with duration. (6) There
are many small (beow 5%) and many big (above 20%) changes. (7) The frequency and size of
changes, and fraction of negative changes, vary with inflation. (8) There is price dispersion even
at low inflation. Our model is consistent with all these.
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(1956), Miller and Orr (1966) and Whalen (1966). The economic intuition is

similar, involving a comparison between the opportunity cost of holding cash and

the cost of tapping financial services. But those papers are partial-equilibrium

analyses, or, more accurately, decision-theoretic analyses of how to manage one’s

money given that it is the only payment instrument. While such models are still

being used to good effect (e.g., Alvarez and Lippi 2014), we like our setup because

it is easy to integrate with standard macro, and allows us to investigate general

equilibrium issues, like the emergence of inflation as a self-fulfilling prophecy.

On money and credit, one approach follows Lucas and Stokey (1987) by sim-

ply assuming some goods require cash and others allow credit. Papers that let

individuals choose subject to a cost of credit include Prescott (1987), Freeman

and Huffman (1991), Chatterjee and Corbae (1992), Lacker and Schreft (1996)

and Freeman and Kydland (2000). See Nosal and Rocheteau (2011) for a gen-

eral discussion; see Gomis-Porqueras and Sanches (2013), Li and Li (2013), and

Lotz and Zhang (2015) for more recent work. There are various interpretations for

these transaction costs, including resources used up in record keeping, screening,

enforcement, etc. Other interpretations include saying that the cost of credit as a

tax that can be avoided by using cash (e.g., Gomis-Porqueras et al. 2014), or that

credit requires resources for monitoring (e.g., Wallace 2013; Araujo and Hu 2014).

Finally, the paper is related to an extensive nonmonetary literature on Burdett-

Judd pricing, including the work in labor following Burdett and Mortensen (1998).

Here, as in those models, if firms are homogeneous then theory does not pin down

which one charges which p, only the distribution F (p). With heterogeneity, lower-

cost firms prefer lower p since they like high volume. Still, for any subset of sellers

with the same marginal cost, theory does not pin down which one posts which p.

This is relevant for retail, where the marginal cost is the wholesale price. Even if

a few retailers get, say, quantity discounts, many others face the same wholesale

price, making them homogeneous for our purposes. This bears on our discussion
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of sticky prices; it is unimportant for the other applications.

3 Environment

As in Lagos and Wright (2005), each t = 1, 2, ... has two subperiods: first there

is a decentralized market, called BJ for Burdett-Judd; then there is a frictionless

centralized market, called AD for Arrow-Debreu. There is a set of firms (retailers)

with measure 1, and a set of households with measure b̄. Agents consume a divisible

good xt and supply labor `t in AD, while in BJ they consume an indivisible good yt

produced by the firms at unit cost γ ≥ 0. Agents in the BJ market can use credit iff

they access at a cost a technology to authenticate identity and record transactions.

By incurring this cost, they can get BJ goods in exchange for commitments to

deliver dt dollars in the next AD; otherwise they need cash at the point of sale.

We consider both a fixed cost δ and a proportional cost τ . Thus, the transaction

cost is C(dt) = δ1 (dt) + τdt, where 1 (dt) is an indicator function that is 1 iff

dt > 0. The cost is paid by buyers, but not much changes if it is paid by sellers.7

Household utility within a period is U(xt) + µ1 (yt) − `t, where U ′(xt) > 0 >

U ′′(xt), µ > γ+δ, and 1 (yt) is an indicator function. Let β = 1/ (1 + r), r > 0, be

a discount factor between AD today and BJ tomorrow; any discounting between

BJ and AD is subsumed in the notation. Let xt be AD numeraire, and assume it is

produced one-for-one with `t, so the real wage is 1. All agents enter the BJ market

for free (later we introduce a cost). Each firm in BJ maximizes profit by posting

a price, taking as given the CDF of other prices Ft(p), with support Ft. Every

period a household in BJ randomly samples n firms —i.e., sees n independent draws

from Ft (p) —with probability αn. As a benchmark we assume α0, α1, α2 > 0 and

αn = 0 ∀n ≥ 3, but this is generalized in Section 4.3.8

7This is similar to elementary tax-incidence theory, with a caveat: when the cost of credit is
paid by sellers, they may want to post different prices for cash and credit.

8In this paper, we always restrict our attention to the case that an is exogenously given. The
results are robust when
I don’t see how their results could not be robust
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The money supply per buyer evolves according to Mt+1 = (1 + π)Mt, with

changes implemented in AD via lump-sum taxes if π > 0 or transfers if π < 0,

but most results are the same if instead government uses seigniorage to buy AD

goods. The AD price of money in numeraire is φt. In stationary equilibrium, π

is the inflation rate, and the nominal interest rate is given by the Fisher equation

1 + i = (1 + π) (1 + r). As is standard, the money growth rate satisfies π > β − 1,

and in stationary equilibrium the Friedman rule corresponds to π → β − 1. Note

that it is easy to introduce bonds explicitly, but there is no need: simply interpret

1 + i as the dollars agents require in the next AD market to give up a dollar in this

AD market, and whether or not such trades occur in equilibrium, of course, they

can be priced. Again, this is completely standard.

3.1 Firm Problem

Let bt denote the measure of participating households —i.e., tightness —in the BJ

market. For now, bt = b̄ because entry is free; later we can have bt < b̄. Assuming

α0, α1, α2 > 0 and αn = 0 ∀n ≥ 3, for now, profit for a firm posting p is

Πt(p) = bt

[
α1 + 2α2F̂t (pt)

]
(pφt − γ) , (1)

where F̂t (p) ≡ 1−Ft (p). Thus, net revenue per unit is pφt−γ, and the number of

units is determined as follows: The probability a buyer contacts this firm and no

other is α1. Then the firm makes a sale for sure. The probability a buyer contacts

this firm and another is 2α2, as it can happen in two ways — this one first and

to such an extension. For example, imagine having the arrival rate in the speci cation of
Mortensen (2005) chosen endogenously at a cost. This would probably have mainly quantitative
e ects and would change the welfare costs of in ation. It’s hard
to imagine that any of these e ects would be major.
Wang (2016) studies the scenario that agents can choose the probability of randomly sampling

n prices with divisible goods and without credit. the probability of observing multiple prices.
The paper shows that in a symmetric stationary monetary equilibrium with nondegenerate price
dispersion, consumers choose to sample one and two prices only. While that paper does not
discuss the coexistence of money and credit, the qualitative results in both papers are similar.
Quantitatively, the welfare cost of inflation differ greatly between the two papers. While the
welfare cost is small in the current paper, the welfare cost of 10% annual inflation is worth
10.25% of consumption, due to the amplification effects of several channels.
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the other second or vice versa. Then the firm makes a sale iff it beats the other’s

price, which has probability F̂t (p). This is all multiplied by bt to convert buyer

probabilities into seller probabilities.

Equilibrium has equal profit ∀p ∈ Ft. Given this, it is standard to show Ft(p)

is continuous and Ft = [p
t
, p̄t] is an interval.9 Also, ∀p ∈ Ft profit from p must

equal profit from p̄t, which is

Πt(p̄t) = btα1 (p̄tφt − γ) , (2)

since the highest price firm never beats the competition. Equating (1) to (2) and

rearranging yields:

Lemma 1 ∀p ∈ Ft = [p
t
, p̄t],

Ft (p) = 1− α1

2α2

φtp̄t − φtp
φtp− γ

. (3)

From this and F (p
t
) = 0 we get

p
t

=
α1φtp̄t + 2α2γ

φt (α1 + 2α2)
. (4)

Also, translating from dollars to numeraire, we let qt = φtpt and write the real

price distribution as

Gt (q) = 1− α1

2α2

q̄t − q
q − γ , (5)

with support by Gt = [q
t
, q̄t], and Ĝt (qt) ≡ 1−Gt (qt).

3.2 Household Problem

Consider stationary equilibrium, where real variables are constant, so nominal

variables grow at rate π. In real terms, the household’s state variable in AD is

A = φm−d−C(d)+I, where φm and d are real money balances and real debt from

9There cannot be a mass of firms with the same p because any one of them would have a
profitable deviation to p − ε, since they lose only ε per unit and make discretely more sales by
undercutting others at p. Also, if there were a gap between p1 and p2 > p1, a firm posting p1
can deviate to p1 + ε and earn more per unit without losing sales.
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the previous BJ market, C(d) is transaction cost, and I is other income, including

net transfers plus profits, assuming firms are owned by the households. All debt

is settled in AD, so households start BJ with a clean slate (they could roll over d

from one AD market to the next at interest rate r, but since preferences are linear

in ` there is no point). Hence, the state variable in BJ is real balances, z.

Letting the AD and BJ value functions be W (A) and V (z), we have

W (A) = max
x,`,z
{U (x)− `+ βV (z)} st x = A+ `− (1 + π) z. (6)

Notice the cost of having z next period is (1 + π) z in terms of numeraire this

period. Eliminating ` and letting x∗ solve U ′ (x∗) = 1, we have

W (A) = A+ U (x∗)− x∗ + βmax
z
Oi (z) , (7)

where the objective function for the choice of z is Oi (z) ≡ V (z)− (1 + i) z, with

i given by the Fisher equation. As is standard in similar models, we have (see

Appendix A for all non-obvious proofs):

Lemma 2 W ′ (A) = 1 and the choice of z does not depend on A.

The BJ value function satisfies

V (z) = W (A) + (α1 + α2)
[
µ− EHq − δĤ (z)− τEH max (0, q − z)

]
. (8)

In (8), Ĥ (q) ≡ 1−H (q) and H (q) is the CDF of transaction prices,

H (q) =
α1G (q) + α2

[
1− Ĝ (q)2

]
α1 + α2

. (9)

NoticeH (q) differs fromG (q), because a buyer seeing multiple draws of q obviously

picks the lowest. Also, notice the costs δ and τ (q − z) are paid iff q > z. Thus,

the benefit of higher z is that it reduces the expected cost using credit.
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4 Analytic Results

The above discussion characterizes behavior given q̄, which will be determined

presently. First, we have these definitions:

Definition 1 A stationary equilibrium is a list 〈G (q) , z〉 such that: given G (q),

z solves the household’s problem; and given z, G (q) solves the firm’s problem with

q̄ determined as in Lemma 3 below.

Definition 2 A nonmonetary equilibrium, or NME, has z = 0. A pure monetary

equilibrium, or PME, has z ≥ q̄. A mixed monetary equilibrium, or MME, has

0 < z < q̄, so BJ trade uses cash for q ≤ z and credit for q > z.

Other variables, like x and `, are implicit, as they are not needed in what follows.

The next step is to describe q̄. To that end, we have (again see Appendix A):

Lemma 3 In NME, z = 0 and q̄ = (µ− δ) / (1 + τ). In MME, z ∈ (0, µ− δ) and

q̄ = (µ− δ + τz) / (1 + τ). In PME, q̄ = z ≥ µ− δ.

Lemma 4 In MME, Oi (z) is continuous, smooth and strictly concave ∀z ∈ (q, q̄),

and linear ∀z /∈ (q, q̄).

In what follows we study a fixed cost, δ > 0 and τ = 0, then a variable cost, τ > 0

and δ = 0.

4.1 Fixed Cost

Given δ > 0 and τ = 0 and Lemma 4, Figure 1 shows the objective function. Let ẑi

be the global maximizer of Oi (z), and let O−i (z) and O+
i (z) be the left and right

derivatives. If O+
i (q) ≤ 0 then ẑi = 0, as in the left panel of Figure 1. If O+

i (q) > 0

then we need to check O−i (q̄). If O−i (q̄) ≥ 0 then either ẑi = 0 or ẑi = q̄, as in the

center panel. If O−i (q̄) < 0 then either ẑi = 0 or ẑi ∈ (q, q̄), as in the right panel.

This immediately leads to the following results:
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Figure 1: Possible Equilibria with a Fixed Cost

Proposition 1 In the fixed-cost model with αn = 0 ∀n ≥ 3: (i) ∃! NME; (ii) ∃!

MME iff δ < δ̄ and i ∈ (i, ı̄); (iii) ∃ PME iff either δ̄ < δ < µ − γ and i < ı̂, or

δ < δ̄ and i < i; and the thresholds satisfy ı̄ ∈ (i,∞),

i =
δα2

1

2α2 (µ− δ − γ)
and δ̄ = µ− γ (2α2

2 + 2α1α2)

2α2
2 + 2α1α2 − α2

1

.

Figure 2: Equilibria with a Fixed Cost

As Figure 2 shows, for money (credit) to be used the nominal rate i (transac-

tion cost δ) cannot be too high. Also, note there is a continuum of PME when

PME exist, for reasons discussed in fn. 4. A benefit of costly credit is that we get

uniqueness of MME, which is our main object of interest. When MME exists, we

can insert G (q) into the FOC of (7) and rearrange to get an explicit solution for
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money demand, i.e., real balances as a function of i,

ẑi = γ +
[
α2

1δ (µ− δ − γ)2 /2α2

]1/3
i−1/3. (10)

This is reminiscent of famous results by Baumol (1952), Tobin (1956), Miller

and Orr (1966) and Whalen (1966). In those papers, agents sequentially incur

expenses requiring currency, with a fixed cost of rebalancing z. Their decision

rule compares i, the opportunity cost of holding z, with the benefit of reducing

the number of financial transactions usually interpreted as trips to the bank. Our

agents make at most one transaction before rebalancing z, but its size is random,

and they still compare the cost i with the benefit of reducing the use of financial

services again loosely interpretable as trips to the bank, although one might say

heuristically that our agents go to the bank to get a loan, rather than make a with-

drawal. In any case, like the above-mentioned papers, we do not model banking

explicitly, but we could following the related model in Berentsen et al. (2007).

4.2 Variable Cost

It turns out τ > 0 = δ is actually easier, and, as shown below, fits the facts

better.10 The price distribution is similar to Section 4.1, and in particular

q̄ =
µ+ zτ

1 + τ
and q =

α1 (µ+ zτ) + 2α2γ (1 + τ)

(α1 + 2α2) (1 + τ)
.

One can check Oi(z) is differentiable everywhere, including q = q̄ and q = q.Hence,

as Figure 3 shows, there are only two possible outcomes: if i > (α1 + α2)τ then

∃! NME; and if i < (α1 + α2)τ then ∃! NME and ∃! MME. Thus, PME do not

exist, because buyers are always willing to use credit with some probability. This

is helpful quantitatively, as it is easier to get a MME for reasonable parameters

10In particular, it avoids a technical issue with fixed costs that we waited until now to raise:
As in any model with non-convexities, agents may want to trade using lotteries. See Berentsen
et al. (2002) for details, but the idea is for a seller to post “you get a good for sure if you pay p; if
you pay p̃ < p you get a good with probability P = P (p̃).”We prefer to avoid this complication,
but still cover fixed costs, mainly to make contact with the models discussed in Section 2.
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Figure 3: Possible Equilibria with a Variable Cost

than in the fixed-cost model (in that version, when δ is moderately high agents

abandon credit, and we get only PME, which never happens with a variable cost).

Proposition 2 In the variable-cost model with αn = 0 ∀n ≥ 3: (i) ∃! NME iff

τ ≤ µ/γ − 1; (ii) ∃! MME iff i < min {τ(α1 + α2), i∗}; (iii) @ PME for i > 0;

where i∗ = i∗ (τ) is the nominal rate that drives buyers’payoff to 0.

Figure 4: Equilibria with a Variable Cost

As Figure 4 illustrates, MME exists for any value of τ > 0 as long as i is not

too big. Also, from (7) we again get a closed-form money demand function,

ẑi = γ +
(µ− γ)

[
τ + (1 + τ)

√
1 + 4α2i/α2

1τ
]

1 + 2τ + 4α2 (1 + τ)2 i/α2
1τ

, (11)

14



similar if not the same as the fixed-cost version, with the same interpretation.

4.3 Generalized Sampling Distributions

To illustrate the tractability and flexibility of the approach, here we consider alter-

native specifications for the probability a household randomly samples n prices.11

Notice that we restrict our attention to the case of exogenous αn in this paper.

Wang (2016) discusses explicitly the case that agents can choose the probability

of observing multiple prices. While that paper does not discuss the coexistence

of money and credit, the qualitative results in both papers are similar, and the

quantitative results such as the welfare cost of inflation differ.

To begin, let N ≤ ∞ be the maximum number of prices that can be sampled.

For a firm posting p, profit is

Πt (p) = bt (pφt − γ)
N∑
n=1

αnnF̂t (pt)
n−1 , (12)

while for one posting p̄t, it is again given by (2). From the equal profit condition

we get Gt(q) and Ht(q). For households, in the fixed- and variable-cost models,

the FOC’s required for MME are respectively

N∑
n=1

αnδH
′ (zi) = i and

N∑
n=1

αnτ [1−H (zi)] = i. (13)

Previously in the paper we discuss the case of N = 2. Here we show that

we can get closed-form solutions with other specifications. Related to Mortensen

(2005), consider a Poisson distribution, αn = e−ηηn/n!, where η = En. We get

Ft (p) = 1− 1

η
[log (φtp̄t − γ)− log (φtp− γ)] .

and analogs to Propositions 1 and 2:

11The results are sketched briefly here, with details in Appendix A. If so desired, one can skip
to the applications without loss of continuity.
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Proposition 3 In the fixed-cost model with a Poisson distribution for n: (i) ∃!

NME; (ii) ∃! MME iff δ < δ̄ and i ∈ (i, ı̄); (iii) ∃ PME iff either δ̄ < δ < µ − γ

and i < ı̂, or δ < δ̄ and i < i; and the thresholds satisfy ı̄ ∈ (i,∞),

i =
e−ηδ

µ− δ − γ and δ̄ = µ− (1− e−η) γ
1− 2e−η

.

Proposition 4 In the variable-cost model with a Poisson distribution for n: (i)

∃! NME iff τ ≤ µ/γ − 1; (ii) ∃! MME iff i < min {τ (1− e−η) , i∗}; (iii) @ PME

for i > 0; and i∗ = i∗ (τ) is the nominal rate that drives buyers’payoff to 0.

As another example, consider a Logarithmic distribution, αn = −ωn/n log (1− ω),

where ω ∈ (0, 1). It is easy to derive

Ft (p) = 1− φt (p̄t − p)
ω (φtp̄t − γ)

.

Notice Ft (p) is linear, so p is uniformly distributed. Here are analogs to Proposi-

tions 1 and 2:

Proposition 5 In the fixed-cost model with a Logarithmic distribution for n: (i)

∃! NME; (ii) ∃! MME iff δ < δ̄ and i ∈ (i, ı̄); (iii) ∃ PME iff either δ̄ < δ < µ− γ

and i < ı̂, or δ < δ̄ and i < i; and the thresholds satisfy ı̄ ∈ (i,∞),

i = − δ

µ− δ − γ log (1− ω)
and δ̄ = µ− γ log (1− ω)

1 + log (1− ω)
.

Proposition 6 In the variable-cost model with a Logarithmic distribution for n:

(i) ∃! NME iff τ ≤ µ/γ−1; (ii) ∃! MME iff i < min {τ , i∗}; (iii) @ PME for i > 0;

and i∗ = i∗ (τ) is the nominal rate that drives buyers’payoff to 0.

As in the baseline model, the Poisson case with a fixed or variable cost delivers

nice money demand functions,

ẑi = γ +
[
e−ηδ (µ− δ − γ)

] 1
2 i−

1
2 or ẑi = γ +

(µ− γ) τe−η

(1 + τ) i+ τe−η
. (14)
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Figure 5: Nominal Price Densities and Inflation

And for the Logarithmic case,

ẑi = γ − δ

i log (1− ω)
and ẑi = γ +

(µ− γ) (1− ω)i/τ

1 + τ − τ (1− ω)i/τ
. (15)

All these specifications entail closed-form solutions for the price distribution and

money demand, with similar intuitive interpretations. However, for simplicity, in

the applications below we use N = 2.

4.4 Repricing Behavior

While this is not the only paper to make the point, and it is not the only point we

make, here we sketch the search-based explanation of sticky prices. In the above

analysis, Ft (p) is uniquely determined, but an individual firm’s p is not. Consider

Figure 5, drawn using the calibrated parameters in Section 5.2. With π > 0, the

density F ′t+1 lies to the right of F
′
t . Firms with p < p

t+1
at t (Region A) must

reprice at t+ 1, because while p maximized profit at t it no longer does so at t+ 1.

But as long as the supports Ft and at Ft+1 overlap, there are firms with p > p
t+1

at t (Region B) that can keep the same p at t + 1 without reducing profit. They

could change, but have no strict incentive to do so.

Consider the repricing strategy in Head et al. (2012): If pt /∈ Ft+1 then pt+1(pt) =

17



p̂ where p̂ is a new price; and if pt ∈ Ft+1 then:

pt+1(pt) =

{
pt with prob. σ

p̂ with prob. 1− σ
(16)

This defines a payoff-irrelevant tie-breaking rule. Very different from Calvo pricing,

where firms desperate to change p are simply not allowed, our rule only applies to

firms that are indifferent. Also, the calibration below delivers σ = 0.90, so only

10% of indifferent firms actually change. In any case, for any σ there is a unique

symmetric equilibrium where all sellers that change draw p̂ from the same repricing

distribution, given by:

Rt+1 (p) =


Ft
(

p
1+π

)
− σ[Ft (p)− Ft(pt+1

)]

1− σ + σFt(pt+1
)

if p ∈ [p
t+1
, p̄t)

Ft
(

p
1+π

)
− σ[1− Ft(pt+1

)]

1− σ + σFt(pt+1
)

if p ∈ [p̄t, p̄t+1]

(17)

From (17) we can compute repricing statistics from the model and compare

them to the facts deemed interesting in the literature. While different values

of σ generate different behavior, it is not the case that anything goes —e.g., at

high inflation most firms adjust each period —and once we pin down σ there are

precise predictions. Hence, while the theory does not impose tight restrictions on

individual’s behavior, it is still interesting to ask how well it accounts for average

repricing behavior. At the very least, to the extent the model is consistent with

the facts, it provides a voice of caution about using data to make inferences about

Mankiw-style menu costs or Calvo-style arrival rates.

5 Quantitative Results

In addition to confronting the price-change data, we want to fit the money-credit

shares in the payment data and the standard empirical notion of money demand.

As in Lucas (2000), that notion is Li = ẑi/Y , where Y = x∗ + (α1 + α2)EHq

is output aggregated over AD and BJ. We use U (x) = log(x), so x∗ = 1 (a
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normalization). The formula for Li is given in Appendix B, and we target its

mean and elasticity in the data. Other key statistics are the average BJ markup

EGq/γ, and the aggregate markup across both AD and BJ. These are natural

targets since BJ equilibrium can deliver anything from monopoly to competitive

pricing as α1/α2 varies, so the markup contains information about this ratio, and

then the aggregate markup contains information about the size of AD and BJ.

5.1 Data

We focus on 1988-2004 because our price-change observations are from that period,

although information from other periods can be used in calibration. For money,

the best available data is the M1J series in Lucas and Nicolini (2012) that adjusts

M1 for money-market deposit accounts, similar to the way M1S adjusts for sweeps

as discussed in Cynamon et al. (2006). Lucas-Nicolini have an annual series from

1915-2008 and a quarterly series from 1984-2013, and make the case that there

is a stable relationship between these and nominal interest rates. We use their

quarterly series to correspond better to the price-change sample.12

Markup information comes from the U.S. Census Bureau Annual Retail Trade

Report 1992-2008. At the low end, in Warehouse Clubs, Superstores, Automotive

Dealers and Gas Stations, gross margins over sales range between 1.17 and 1.21;

at the high end, in Specialty Foods, Clothing, Footwear and Furniture, they range

between 1.42 and 1.44. Our target for the gross margin is 1.3, which implies a

markup of 1.39, consistent with the data analyzed by Stroebel and Vavra (2015).

Then we choose a target for the aggregate markup of 1.1, as is typical in macro

applications (e.g., Basu and Fernald 1997). Since the BJ markup is 1.39 and the

AD markup is 1.0, the BJ market accounts for about 25% of output in the model.

On the shares of money and credit there are various sources. In terms of

12In these data the average annualized nominal rate is Ei = 0.041, which implies LEi = 0.277
and ηEi = −0.116. The longer annual sample has Ei = 0.038, LEi = 0.279 and ηEi = −0.149;
using these gives similar results. We also tried truncating the data in 2004, to better match the
pricing sample, and to avoid the financial crisis; that too gave similar results.
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concept, we interpret monetary transactions to include cash, check and debit card

purchases. Here is the rationale: (1) Checks and debit cards use demand deposits

that are about as liquid as currency and pay basically zero interest. (2) For our

purposes, the interesting feature of credit is that it allows you to pay for BJ goods

by working in the next ADmarket, while cash, check and debit purchases all require

working in the previous AD market, which matters a lot especially because BJ

transactions are random. (3) This notion of money in the micro data is consistent

with the use of M1J in the macro data. Hence, monetary exchange includes cash,

check and debit but not credit cards. Earlier calibrations of monetary models

(see Cooley 1995) target 16% for credit purchases, but more information is now

available. In grocery-store data, Klee (2008) finds credit cards account for 12%

of purchases, but we do not want to focus on just groceries. In Boston Fed data

discussed by Bennett et al. (2014), credit cards account for 22% of purchases. In

Bank of Canada data discussed by Arango and Welte (2012), the number is 19%.

We target to 20%.13

For price-change data we mainly use Klenow and Kryvtsov (2008), and bench-

mark their average duration of 8.6, but alternatives are also considered since there

are differences across studies, depending on details. Their average absolute price

change is 11.3%, well above average inflation, because there are many negative

changes. Since the Klenow-Kryvtsov data are monthly, the model period is a

month. Our model-generated money demand data is aggregated to quarterly to

line up with Lucas-Nicolini. A month also seems natural to us, as it corresponds

to the usual credit card billing period. However, the period does not really matter

much for our purposes —a very convenient feature of this class of models.14

13The share of credit in the data is stable over the relevant period, where the bigger changes
have been into debit and out of checks and to some extent out of currency (Jiang and Shao 2014).
Also, we use the credit share by volume, which is better for our purposes than the share by value.
As an aside, while the Canadian and American numbers basically agree on shares by volume,
they are quite different by value. In discussions with those who collect the data, they could not
explain the differences by value, but this is less of a concern given we calibrate to volume.
14In case it is not obvious, to see the intuition consider a simple job search model. Let V0 and

V1(w) be the value of unemployment and employment at wage w, α the arrival rate of jobs, and
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5.2 Basic Findings

Calibration results are shown in Table 1. Consider first the fixed-cost model, which

hits all targets except the fraction of credit transactions, because our parameter

search is constrained to stay within the region where MME exists. Trying to get

20% BJ credit transactions forces δ into a region where MME does not exist for

some values of i in the sample. Hence, with a fixed cost we use the smallest

δ consistent with MME at the maximum observed i = 0.103, which yields only

11.9% credit transactions. This δ is about 4.7% of the utility parameter µ, which

comes primarily from matching average real balances. The value of γ, about one-

third of µ, comes primarily from the BJ markup. The probability of sampling one

price (two prices) is α1 = 0.013 (α2 = 0.081).

BJ utility BJ cost credit cost pr(n = 1) pr(n = 2) tie breaker
µ γ δ or τ α1 α2 σ

Fix 8.62 2.91 0.404 0.013 0.081 0.90
Var 5.93 3.14 0.202 0.034 0.048 0.90

Table 1: Baseline Calibration

Alternatively, the variable-cost model hits all targets, including 20% for BJ

credit, making it clearly better for our purposes. Now the average transaction cost

scaled by BJ utility is τEH max (0, q − z) /µ = 0.0029, less than average credit

cards fees of around 1.5-2% without counting small fixed costs per transaction.

The point is that we do not need big transaction costs. Also notice that α1 (α2)

is higher (lower) than in the fixed-cost model. A constant across specifications is

the tie-breaking parameter σ = 0.90, implying that indifferent sellers change prices

only 10% of the time.

κ a search cost. Then rV0 = α [V1 (w)− V0] − κ. To change from, e.g., a weekly to a monthly
model, we can simply multiply r, α, κ and w by 4 (to a first approximation) without changing
payoffs or observables like unemployment or the hourly wage —the only caveat is the constraint
α ≤ 1. Something similar is true here. In particular, for shorter periods, agents get to rebalance
z more often, but the lower arrival rates associated with shorter periods imply they hold cash
for just as long, on average, before spending it, so the impact of the inflation tax is the same.
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Figure 6 shows money demand as the solid (dashed) curve with a fixed (variable)

cost. The fit is good in both cases, although the curves are different at low values

of i. This difference is important for some issues, but not for our applications.

The broad conclusion is that a variable-cost model can match well macro money

demand data plus the findings in the micro payment studies.
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Figure 6: Money Demand for Different Specifications

6 Applications

6.1 Sticky Prices

As discussed, the model can in principle generate the appearance of sticky prices.

How well can it do quantitatively? Figure 7 shows the Klenow-Kryvtsov data

plus the model predictions for the price-change distribution. Both the fixed- and

variable-cost versions capture the overall shape of the empirical histogram, but

the fit is not perfect. We now argue, however, that the theory is generally broadly

consistent with the facts considered important in the literature.

The average absolute price change is 11.3% in the data, 11.1% in the model

with a fixed cost of credit, and 12.3% with a variable cost, so both are very close

to the data. The fraction of small changes (below 5% absolute value) is 44% in
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Figure 7: Distribution of Price Changes

the data, 32% with a fixed cost, and 30% with a variable cost, which is off but

not dramatically so.15 The fraction of big changes (above 20% absolute value) is

16% in the data, 20% with a fixed cost, and 21% with a variable cost, while the

fraction of negative changes is 37% in the data, and 43% in both models. So on

these we are slightly off but not too bad. Given the literature says it is not easy

to get large average, many small, many big, and many negative adjustments, this

seems reasonably good, but not perfect. To be clear, we do not calibrate to match

any price-change statistics, only to match money demand, payment methods, and

markups, although we do set σ to match average duration.

Another observation to consider is the hazard rate, the probability of chang-

ing p as a function of the time since the last change. The left panel Figure 8

plots the data from Nakamura and Steinsson (2008) and the right panel shows

the prediction from the variable-cost model. We do not generate enough action

at low durations, but at least the hazard slopes downward, something they say is

hard to get in theory. Now we do not expect to explain every nuance, as there

is undoubtedly a lot missing in the model related to the hazard, including exper-

imentation/learning (e.g., Bachmann and Moscarini 2014). Still, it is interesting

15This may not be so bad, given that Eichenbaum et al. (2015) find a lower fraction of small
price changes, due to correcting for measurement errors.
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Figure 8: Price Change Hazards

that our hazard decreases for a while, before turning up eventually.

Figure 9: The Effect of Varying Duration

Figures 9 and 10 show the impact of changing duration and inflation in the

variable-cost model. The left panel of Figure 9 is for σ ' 0 and an expected dura-

tion of 1 month; the right is for σ = 0.95 and an expected duration of 16 months.

The latter is particularly interesting because as Burdett and Menzio (2016) show,

the main properties of equilibrium survive the introduction of small menu costs

that make sellers change less frequently. Moreover, given the variability of es-

timates of average duration (see Appendix C), it is worth considering robustness

with respect to σ. The left panel of Figure 10 sets π to 0, and the right to 20%, not
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Figure 10: The Effect of Varying Inflation

a robustness check but to see how repricing behavior depends on inflation. As π

increases, the fraction of negative adjustments falls, while both the frequency and

size increase. This is relevant because it is consistent with the evidence (Klenow

and Kryvtsov 2008), and hard to explain with simple Calvo models.

In a closely related paper, Head et al. (2012) also calibrate their model to

quantitatively explain the patterns of price changes in the data. There are two

major differences between their quantitative exercise and ours. First, the goods in

their BJ market are divisible and it gives the model more curvature to match the

data better. Second, they only target on micro price changes while we also use

macro money data to discipline our model. Figure 11 shows a calibration that gives

up on matching money demand. The fit is very good compared to Figure 6 in Head

et al. (2012), especially considering that they use the price change distribution as

a direct calibration target.

To summarize, while the fit is not perfect, overall we conclude that there is

nothing especially puzzling in the price-change data —this is pretty much what

search theory predicts. This is true even with the discipline imposed by macro

and micro observations on money and credit. If we ignore those observations we

can do better. The fit in Figure 11 is obviously very good. Hence, it is easy to

capture sluggish nominal prices quantitatively if we do not impose the discipline of
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Figure 11: Distribution of Changes Ignoring Money Demand

matching other data. While obviously there are other explanations out there, this

suggests to us that theories with search frictions should be part of the conversation.

6.2 Inflation in the Baseline Model

A classic issue concerns the welfare cost of inflation. Welfare here is measured by

Ω ≡ Y − (α1 + α2)

{
δ [1−Hπ (zπ)] + τ

∫ q̄

zπ

(q − zπ) dHπ

}
, (18)

where Y = U (x∗) − x∗ + (α1 + α2) (µ− γ) adds the AD and BJ surpluses, while

the remaining terms subtract the cost of credit. As is standard, we compute the

percent change in consumption that is equivalent to changing π from a given level

to some alternative like π = 0.

Figure 12 shows the cost of inflation over the range for which MME exists,

from π = β− 1 up to about 9% with a fixed cost (left) or 20% with a variable cost

(right).16 The welfare costs are small: with a variable cost, eliminating 10% annual

inflation is worth only 0.23% of consumption, less than estimates in Lucas (2000),

and much less than Lagos and Wright (2005). Intuitively, changes in π affect

16These thresholds are low, but this is not surprising in a representative-agent context. Suppose
we introduce heterogeneity across buyers, with some having zero or only very costly access to
credit —e.g., the unbanked, who have to deal with loan sharks, pawnshops or payday advances.
They would presumably continue to use cash up to higher thresholds.
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Figure 12: Welfare Effects of Inflation

neither the intensive margin of trade, since the good is indivisible, nor the extensive

margin, since participation is fixed. Because α1 and α2 are exogenous, inflation

does not affect the household’s search behavior, either. In a similar setup without

credit, Wang (2016) allows consumers to choose to sample one or two prices, and

the welfare cost of 10% annual inflation is worth 10.25% of consumption, due to

the amplification effects of several channels including search intensity. Our welfare

effects are mainly due to inflation impinging on the cash-credit margin, but this is

generalized in Section 6.3.
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Figure 13: Other Effects of Inflation

Now consider the relationship between inflation, markups and price dispersion.
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With a fixed cost of credit π does not affect G (q), markups or price dispersion.

With a variable cost, one can show G(q) decreases with π in the sense of first-order

stochastic dominance. Hence, the average markup and dispersion (coeffi cient of

variation) both decrease with π, as shown in Figure 13. Benabou (1992) finds a

small but significant negative relationship between markups and π, consistent with

our model. On inflation and dispersion, Parsley (1996) and Debelle and Lamont

(1997) find the relationship is positive, Reinsdorf (1994) finds it is negative, and

Caglayana et al. (2008) find it is U-shaped. So the facts are not unequivocally

established, but our model is at least consistent with Reinsdorf (1994).

6.3 Endogenous Participation

We now let buyers choose whether to participate in the BJ market, at cost k > 0,

to make output depend directly on inflation.17 Let W 1 (A) and W 0 (A) be the AD

value functions for households that enter and do not enter the next BJ market,

respectively, so that W (A) = max {W 1 (A) ,W 0 (A)}. In equilibrium where some

but not all households enter, W (A) = W 1 (A) = W 0 (A). This simplifies to

βΨ = k, where Ψ is the expected surplus from participation,

Ψ ≡ (α1 + α2) [µ− EHq − τEH max (0, q − z)]− iẑi. (19)

Buyers’arrival rates now depend on tightness, αn = αn(bt). With entry, b adjusts

to satisfy (19). An increase in π reduces b, and hence output, although a one-time

unanticipated increase in M does not (classical neutrality).

To parameterize the α’s, suppose buyers attempt to solicit price quotes and

succeed with probability s = s(b), with s(0) = 1, s(b̄) = 0, s′(b) < 0 and s′′(b) > 0,

as is standard. Then suppose that any buyer who succeeds sees one price with

probability 1− ξ and sees two with probability ξ. Hence, α1(b) = (1− ξ)s(b) and

α2(b) = ξs(b). As a special case of the money demand functions derived above, ẑi
17Similar monetary models with endogenous entry by buyers include Liu et al. (2011), while

those with entry by sellers include Rocheteau and Wright (2005); famous early search models
with entry include Diamond (1982) and Pissarides (2000).
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Figure 14: The Real Balance and Free Entry Curves

now depends on b, as shown in Figure 14 by the RB (real balance) curve. Similarly,

βΨ = k is shown as the FE (free entry) curve. The curves intersect at MME. In

Figure 14, RB is decreasing and convex while FE is concave, implying a unique

MME, from which F (p), G (q) and the rest of the variables follow as usual. One

can check that higher π shifts both curves toward the origin, reducing buyer entry

and BJ output.
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Figure 15: Welfare Effects of Inflation with Entry

While our theory is consistent with the appearance of sticky prices, the impli-

cations are different from many other models with sticky prices. In those models,

a one-time unanticipated jump in M has real effects. This is because not all firms
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Figure 16: Other Effects of Inflation with Entry

adjust p, even though they would like to, and hence F (p) does not change enough

to keep the same G (q). So prices turn in favor of buyers, making b and output

increase. In contrast, in our model, a surprise jump in M affects neither G (q) nor

b. A policy advisor seeing only a fraction of sellers adjusting p each period may

conclude that a jump in M can have real effects, which is wrong. Although not

surprising, it is worth emphasizing that for policy it is not actually enough to say

prices are sticky in the data; it is important to know why.

As Figure 15 shows, compared to the benchmark model the cost of inflation

approximately doubles, because now an increase in π decreases b. Figure 16 demon-

strates how π affects markups, price dispersion, and payment methods in the

variable-cost model. Compared to Figure 13, endogenizing participation does not

change the impact of inflation on markup or dispersion a lot. In particular, now

fewer buyers enter the BJ market at higher π, but since that leads to higher arrival

rates for those that enter, their reduction in real balances is attenuated.
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6.4 Endogenous Dynamics

Many models of liquidity have nonstationary equilibria.18 To pursue this, in a

general way, assume m has a real flow return ρ: if ρ > 0 then m can be interpreted

as equity in a ‘tree’bearing ‘fruit’as a dividend, as in standard finance; if ρ < 0

then it can be interpreted as a storage cost, as in standard models of commodity

money. The novelty here concerns dynamics in the price distribution F (p), not

just the price level. While this is also done in Burdett et al. (2017), that model is

very special, as individuals are restricted to hold only m ∈ {0, 1}.

For simplicity, let us here revert to k = 0 so that b = b̄, focus only on the model

with a variable cost, and keep the asset supply M fixed, to ease notation. The

household’s problem is then

W (A) = A+ U (x∗)− x∗ + βmax
z
Oi (z) ,

where A = ρm + φm − d − C(d) + I includes dividend income ρm, and Or (z) =

V (z)− (1 + r) z. The Euler equation is

φt =
φt+1 + ρ

1 + r

[
1 + (α1 + α2) τĤ (ẑ)

]
, (20)

where now we do not impose stationarity of φt. If α1 = α2 = 0 then (20) is a

standard asset-pricing equation, and there is a unique equilibrium with φt = ρ/r

∀t, since any other solution to (20) violates the transversality condition (see e.g.

Rocheteau and Wright 2013 for a discussion in a related model).

If we do not impose α1 = α2 = 0, (20) is augmented on the RHS by a liquidity

premium capturing the expected reduction in credit costs, (α1 + α2) τĤ (ẑ). That

dramatically changes the equilibrium set. After some algebra we get

φt =
φt+1 + ρ

1 + r

{
1 +

τα2
1

4α2

[
µ−

(
ρ+ φt+1

)] [
µ+

(
ρ+ φt+1

)
(1 + 2τ)− 2γ (1 + τ)

]
(1 + τ)2 (ρ+ φt+1 − γ

)2

}
,

(21)

18See Rocheteau and Wright (2013) and references therein for search models with liquid (fiat
as well as real) assets. See Azariadias (1993) for an earlier literature. See Gu et al. (2013) for
endogenous dynamics in pure-credit economies.
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giving today’s asset price in terms of tomorrow’s, φt = Φ
(
φt+1

)
. The left panel of

Figure 17 shows φt = Φ
(
φt+1

)
and the inverse φt+1 = Φ−1 (φt) for our calibrated

parameters, including ρ = 0. In this case there is a unique steady state MME

at φ ≈ 4.4. As typical, the monetary (nonmonetary) steady state is unstable

(stable), implying that there are equilibria where φ → 0, featuring inflation as a

self-fulfilling prophecy.
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Figure 17: Phaseplane for Dynamic Equilibria

Endogenous cycles exist if we take a small departure from the calibrated para-

meters. The right panel of Figure 17 makes one change in parameters, reducing

α1 to 0.0001. There is still a unique steady state MME, now with φ ≈ 3.14, but

textbook methods (e.g., Azariadis 1993) imply the following: Since Φ′ < −1 at

the monetary steady state, Φ and Φ−1 also cross off the 45o line, say at (φL, φH)

and (φH , φL). This is an equilibrium with a cycle of period 2, where φ oscillates

between φL and φH . Heuristically, if φt+1 = φL is low then liquidity will be scarce

at t+1, making buyers want more of the asset at t, and thus making φt = φH high.

While it is not atypical for monetary models to have cyclic equilibria, this intu-

ition is different from OLG models, say, where the results are described in terms

of backward-bending labor supply or savings functions. It is also different from

other Lagos-Wright type models with divisible goods. In Burdett et al. (2017),

the nonlinear utility in the decentralized market drives the curvature of Φ and Φ−1
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and generates a rich equilibrium dynamics. In this model, while the goods in the

decentralized market are indivisible and the utility is a constant, the firm’s price

posting and the household’s search generate a smooth price distribution in the BJ

market, which is the source of the curvature in (21).

Also, we reiterate that this economy has fluctuations in the distribution F (p),

not just the price level, but the analysis is still easy because p̄ is suffi cient to pin

down F (p). The tractability of the model enables us to discuss changes of key

variables over the cycles. In Appendix D, we are able to derive the average price,

the average credit usage, and the price dispersion explicitly as functions of φt.

We show that as the asset price moves from φL to φH , the average posted and

transaction price both increase while the share of credit transactions decreases. If

φt is high then liquidity is abundant in the current period, reducing the household’s

need to use credit, and firms can post higher prices, driving a higher level of price

dispersion.
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Figure 18: Examples with a 3-Cycle and with Two Steady States

For the same parameters that generate the 2-cycle, the left panel of Figure

18 shows the third iterate Φ3 (φ). In addition to the steady state, Φ3 (φ) has 6

intersections with the 45o line. This means there exist a pair of 3-cycles. Standard

results (again see Azariadis 1993) tell us that the existence of a 3-cycle implies the

existence of N -cycles ∀N by the Sarkovskii theorem, as well as chaotic dynamics
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by the Li-Yorke theorem. So there is a large set of perfect-foresight dynamics, if

not for the calibrated parameters, for values that are close. There are also sunspot

equilibria with random fluctuations in φ, F (p) and other variables, featuring excess

volatility as a self-fulfilling prophecy.19

When ρ = 0, one might think this dynamic multiplicity arises because there are

two steady states, φ > 0 and φ = 0. However, we can eliminate the equilibrium

with φ = 0 by having ρ > 0, and as long as ρ is not too big the qualitative

results are the same. Heuristically, the dynamic equilibria should not be interpreted

as approximating fluctuations across steady states, but around a steady state.

Alternatively, we can also set ρ < 0, which leads to two steady states, φ1 and

φ2 > φ1 > 0, as shown in the right panel of Figure 18, drawn for the same

parameters except ρ = −0.4. In this case we can construct sunspot equilibria

fluctuating around it.20

Summarizing, models with money and costly credit admit cyclic, chaotic and

stochastic dynamics, with a price distribution and the use of money/credit vary-

ing over time. While the tools used to establish these results are standard, the

economics is somewhat novel.

7 Conclusion

This paper has explored money and credit as competing payment instruments. For

this we integrated Burdett-Judd pricing into a Lagos-Wright monetary model. We

are not the first to combine these ingredients; the contribution was more about

19A proof that sunspot equilibria exist, going back to Azariadis and Guesnerie (1986), is to
suppose the outcome depends on an extrinsic two-state Markov process, s ∈ {s1, s2}, where
εs = prob(st+1 6= s|st = s). If ε1 = ε2 = 1 this reduces to a 2-cycle, the existence of which we
just proved by example. By continuity there are equilibria for εs < 1.
20A method Azariadis (1981) uses in OLG models is this: We seek (φ1, φ2, ε1, ε2) such that

φ1 = ε1Φ (φ2)+(1− ε1) Φ (φ1) and φ2 = ε2Φ (φ1)+(1− ε2) Φ (φ2), where εs ∈ (0, 1) and w.l.o.g.
φ2 > φ1. These equations are linear in, and hence easy to solve for, ε1 and ε2. Whenever
Φ′ (φs) > 1 at a steady state φs, for any φ1 in some range to the left of φs and any φ2 in some
range to the right of φs, one can check ε1, ε2 ∈ (0, 1), which is all we need to have a proper
sunspot equilibrium.
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the introduction of costly credit, which is technically very useful, because it re-

solves the indeterminacy problem in other models with money and price posting.

The contribution also concerns quantitative results. For both fixed and variable

transaction costs, and for different assumptions about the way households sample

prices, we derived exact money demand functions that resemble classic results in

the literature, but, we think, with better microfoundations. These functions can

match macro data, and at least the variable-cost model can match the money-credit

shares in micro data.

In one application we showed how the theory can account for the price-change

data. It accounts for these data fairly well even if we impose the discipline of

matching other observations, and very well if we do not impose this discipline.

By accounting for the data, we mean there are equilibrium outcomes that are

consistent with the evidence. To restate the obvious, theory does not pin down

which seller posts which price in the cross section, and hence does not pin down

price-change behavior in the time series. However, once we set the parameter σ

in our payoff-irrelevant tie-breaking rule, there is a unique symmetric, stationary,

monetary equilibrium with precise predictions about price-change behavior. We

calibrated σ to the average duration of prices, then compared these predictions to

the facts.21

Another application revisited the cost of inflation, from which we learned the

following: while search-based models with bargaining generate large welfare costs,

this is not the case in otherwise similar models with price posting. We found this in

our baseline specification, and in an extension with endogenous participation. We

21Recall the stylized facts reported in fn. 6: (1) Empirical price durations vary across studies
but are typically quite long. (2) The frequency and size of price changes vary across goods. (3)
Two sellers changing p at the same time do not generally pick the same p̂. (4) Many changes
are negative. (5) Hazards decline at least slightly with duration. (6) There are many small but
also many big changes. (7) The frequency and size of price changes, plus the fraction of negative
changes, vary with inflation. (8) There is price dispersion even at low inflation. Our model is
consistent with all these, although we did not play up (2); it is clear, however, that different
values for the preference and cost parameters µ and γ, or arrival rates αn, as is reasonable for
different goods, will affect price-change behavior.
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also considered the relationships between inflation, markups and price dispersion,

where the model was consistent with some empirical literature. A final application

discussed endogenous dynamics. The mathematics in that discussion are not new,

but there are some novel economic ideas —e.g., fluctuations in a price distribution,

not just a price level. Other extensions are possible, such as incorporating hetero-

geneity, or combining menu-cost and search-based monetary models; these are left

for future work.
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Appendix A: Proofs (for on-line publication)
Derivation of (8): The BJ value function can be written

V (z) = W (A) + α1

∫ z

q

(µ− q) dG1 (q) + α1

∫ q̄

z

[µ− q − δ − τ(q − z)] dG1 (q)

+ α2

∫ z

q

(µ− q) dG2 (q) + α2

∫ q̄

z

[µ− q − δ − τ(q − z)] dG2 (q) ,

where Gn(q) = 1 − Ĝ(q)n is the CDF of the lowest of n draws from G(q). The

first term is the continuation value if a buyer does not trade. The second is the

probability of meeting a seller with q ≤ z, so only cash is used, times the expected

surplus, which is simple because W ′ (A) = 1. The third is the probability of

meeting a seller with q > z, so credit must be used, which adds fixed cost δ and

variable cost τ(q − z). The last two terms are similar except the buyer meets two

sellers. The rest is algebra. �

Proof of Lemma 3: For part (i), in NME, buyers’BJ surplus is Σ = µ − q −
δ − τq. Note Σ = 0 at q = (µ− δ) / (1 + τ), so no buyer pays more than this. If

q̄ < (µ− δ) / (1 + τ) then the highest price seller has profitable deviation toward

(µ− δ) / (1 + τ), which increases profit per unit without affecting sales. Hence

q̄ = (µ− δ) / (1 + τ).

For part (ii), in MME, for q > z, Σ = µ − q − δ − τ(q − z). Note Σ = 0

at q = (µ− δ + τz) / (1 + τ), and repeat the argument for NME to show q̄ =

(µ− δ + τz) / (1 + τ). The definition of MME has z < q̄ = (µ− δ + τz) / (1 + τ),

which reduces to z < µ− δ.
For (iii), in PME, given buyers bring z to BJ they would pay z. Hence q̄ ≥ z,

as q̄ < z implies the highest price seller has profitable deviation. We also have

to be sure there is no profitable deviation to q > z, which requires buyers using

some credit. The highest such q a buyer would pay solves Σ = µ − q − δ −
τ (q − z) = 0, or q = (µ− δ + τz) / (1 + τ). There is no profitable deviation iff

(µ− δ + τz) / (1 + τ) ≤ z, which reduces to z ≥ µ− δ. �

Proof of Proposition 1: Part (i), for fiat currency φ = 0 is always self-fulfilling,

so we can set G (q) according to (5), corresponding to equilibrium in the original

BJ model.

For (ii), from Figure 1, MME exists iff three conditions hold: (a) O−i (q̄) < 0; (b)

O+
i (q) > 0; and (c) Oi(zi) > Oi(0). Now (a) is equivalent to (α1 + α2) δH−(q̄) < i,
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which holds iff i > i. Then (b) is equivalent to (α1 + α2) δH+(q) > i, which holds

iff i < ı̃ where ı̃ = δ (α1 + 2α2)3 /2α1α2 (µ− δ − γ) > i. Also, (c) is equivalent to

(α1 + α2) δH (zi)− izi > (α1 + α2) δH (0), which holds iff∆ (i) > 0 where

∆ (i) = −iγ +
δ (α1 + 2α2)2

4α2

− i 23 δ 13α
2
3
1 α
− 1
3

2 (µ− δ − γ)
2
3 (2−

1
3 + 2−

4
3 ).

Notice ∆ (0) > 0 > ∆ (̃ı) and ∆′ (i) < 0. Thus, ∃! ı̄ such that ∆ (̄ı) = 0, and

∆ (i) > 0 iff i < ı̄. It remains to verify that ı̄ > i, so that (a) and (c) are not

mutually exclusive. It can be checked that this is true iff δ < δ̄. Hence, a MME

exists under the stated conditions. It is unique because q̄ = µ−δ, which pins down
G (q), and then ẑi = arg maxz∈(q,q̄) Oi (z).

For (iii), from Figure 1, PME exists iff three conditions hold: (a) O−i (q̄) > 0;

(b) O+
i (q) > 0; and (c) Oi(q̄) > Oi(0). Now (a) holds iff i < i and (b) holds iff

i < ı̃. Condition (c) holds iff i < ı̂. For δ > δ̄, it can be checked that ı̂ < i and

i < ı̃, so the binding condition is i < ı̂. For δ < δ̄, it is easily checked that ı̂ > i,

and i < ı̃, so the binding condition is i < i. �

Proof of Proposition 2: Part (i), with fiat currency φ = 0 is always self-fulfilling,

so there is a NME iff buyers’payoff from in the BJ market is nonnegative, (α1 +

α2)[µ − (1 + τ)EHq] ≥ 0. Substituting EHq into this, after some algebra we can
show this holds iff τ ≤ µ/γ − 1.

For (ii), from Figure 3, MME exists iff three conditions hold: (a) O−i (q̄) < 0;

(b) O+
i (q) > 0; and (c) ΨM > 0 where

ΨM = (α1 + α2) [µ− EHq − τEH max (0, q − zi)]− izi

is buyers’payoff from the BJ market. Now (a) holds automatically since O−i (q̄) =

−i. Then, (b) is equivalent to (α1 + α2) τĤ+(q) > i, which holds iff i < (α1 +α2)τ .

And (c) is equivalent to

ΨM = α2 (µ− γ) +
α1τ (µ− zi)

1 + τ
− α2

1τ(µ− zi)2

4α2(1 + τ)2(zi − γ)
− izi = Ψ (zi)− izi > 0.

NoticeΨM is strictly concave and continuous in i, limi→0 ΨM > 0, and limi→∞ΨM <

0. Hence there exists a unique solution to ΨM = 0, which defines i∗, so ΨM > 0

holds ∀i < i∗. Hence, a MME exists under the stated conditions. It is unique

because O′′i (zi) = V ′′(zi) < 0, and then ẑi = arg maxz∈(q,q̄) Oi (z).

Finally, for part (iii), from Figure 3 it is clear that there is no PME in the

variable-cost model. �
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Proof of Proposition 3: Substituting αn into (12) we have

Πt(p) = bt (pφt − γ) ηe−η
∞∑
n=1

[
ηF̂t (pt)

]n−1

(n− 1)!
= bt (pφt − γ) ηe−ηFt(p),

since ex =
∑∞

i=0 x
i/i!. As a special case, Πt(p̄t) = bt (p̄tφt − γ) ηe−η. Equal profit

implies

Ft (p) = 1− 1

η
[log (φtp̄t − γ)− log (φtp− γ)]

Gt (q) = 1− 1

η
[log (q̄t − γ)− log (q − γ)] ,

with q̄ as in the baseline model and q
t

= e−η q̄t + (1− e−η) γ. Algebra then yields

Ht (q) =

∑∞
n=1 αn [1− [1−Gt (q)]n]∑∞

n=1 αn
=

1− e−η (q̄t − γ) / (q − γ)

1− e−η .

In the fixed-cost model, (i) holds as in Proposition 1. For (ii), follow Propo-

sition 1 and check : (a) O−i (q̄) < 0; (b) O+
i (q) > 0; and (c) Oi(zi) > Oi(0).

Now (a) holds iff
∑∞

n=1 αnδH
−(q̄) < i iff i > i = e−ηδ/(µ − δ − γ). Then (b)

holds iff
∑∞

n=1 αnδH
+(q) > i iff i < ı̃ = eηδ/(µ − δ − γ) > i. And (c) holds iff∑∞

n=1 αnδH (zi)− izi >
∑∞

n=1 αnδH (0) iff∆ (i) > 0, where

∆ (i) = δ − 2
[
e−ηδ (µ− δ − γ) i

] 1
2 − iγ.

Given ∆ (0) > 0 > ∆ (̃ı) and ∆′ (i) < 0, ∃! ı̄ such that ∆ (̄ı) = 0, and ∆ (i) > 0 iff

i < ı̄. It remains to verify ı̄ > i, so that (a) and (c) are not mutually exclusive.

This is true iff δ < δ̄, where δ̄ = µ − (1− e−η) γ/ (1− 2e−η). Hence, MME exists

under the stated conditions. The rest of the proof is the same as Proposition 1,

except with ı̂ = δ(1− e−η)/(µ− δ). �

Proof of Proposition 4: For (i) we again follow the proof of Proposition 2 and
check

ΦN =

∞∑
n=1

αn [µ− (1 + τ)EHq] ≥ 0.

After substituting EHq, we get ΦN = (1 − e−η − η−η)[µ − γ(1 + τ)]. Thus NME

exists iff τ ≤ µ/γ − 1.

To prove (ii), we again check: (a) O−i (q̄) < 0; (b) O+
i (q) > 0; and (c) Oi(zi) > 0,

where

Oi(zi) =

∞∑
n=1

αn

[
µ− EHq − τ

∫ q̄

ẑi

(q − ẑi) dH
]
− iẑ.
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Now (a) always holds, and (b) holds iff i < (1− e−η)τ . For (c), substitute αn and
H and simplify to get

Oi (zi) =
(
1− e−η

)
µ−

(
1− e−η − ηe−η

)
γ − ηe−ηµ+ ziτ

1 + τ
− τe−ηγ (µ− zi)

(1 + τ) (zi − γ)

−τe
−η [µ− γ + τ (zi − γ)]

1 + τ
log

µ− γ + τ (zi − γ)

(1 + τ) (zi − γ)
.

One can show O
′′
i (zi) < 0. Since zi is strictly decreasing in i, O

′′
i (zi) is strictly

convex in i on [0,∞). Moreover, limi→0Oi(zi) > 0 and limi→∞Oi(zi) < 0. There

is a unique solution to Oi(zi) = 0 and that defines i∗, so Oi(zi) > 0 ∀i < i∗. Hence,

there exists a unique MME iff i < min {τ (1− e−η) , i∗}.
Finally, as in the proof of Proposition 2, (iii) is true. �

Proof of Proposition 5: Substituting αn into (12) we have

Πt(p) = bt (pφt − γ)
∞∑
n=1

[
− ωn

log (1− ω)

] [
F̂t (pt)

]n−1

,

and Πt(p̄t) = −bt (p̄tφt − γ)ω/ log (1− ω). Now equal profit implies

Ft (p) = 1− φt (p̄t − p)
ω (φtp̄t − γ)

and Gt (q) = 1− q̄t − q
ω (q̄t − γ)

,

with q̄ as in the baseline models and q
t

= (1− ω)q̄t + ωγ. Also,

Ht (q) = 1− log [1− ω [1−Gt(q)]]

log (1− ω)
= 1− log (q − γ)− log (q̄t − γ)

log (1− ω)
,

where we used
∑∞

n=1 x
n/n = − log(1− x).

In the fixed-cost model, (i) holds as in Proposition 1. To show (ii), we check:
(a) O−i (q̄) < 0; (b) O+

i (q) > 0; and (c) Oi(zi) > Oi(0). Now (a) holds iff i > i =

−δ/[(µ− δ−γ) log(1−ω)], and (b) holds iff i < ı̃ = −δ/[(1−ω)(µ− δ−γ) log(1−
ω)] > i. Then (c) holds iff∆ (i) > 0, where

∆ (i) = δ − δ [log (ẑi − γ)− log (µ− δ − γ)]

log (1− ω)
− iγ +

δ

log (1− ω)
.

It is easy to check ∆′ (i) < 0, limi→0 ∆(i) > 0, and ∃! ı̄ such that ∆ (̄ı) = 0. Hence

∆ (i) > 0 iff i < ı̄. For (a) and (c) to be not mutually exclusive, we check ı̄ > i.

This holds iff δ < δ̄, where

δ̄ = µ− γ log (1− ω)

1 + log (1− ω)
.
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Thus MME exists. Uniqueness follows Proposition 1, as does (iii), except now

ı̂ = δ/ (µ− δ). �

Proof of Proposition 6: For (i), we check

ΦN =

[
1− ω

log (1− ω)

]
[µ− γ (1 + τ)] ≥ 0,

which holds iff τ ≤ µ/γ − 1. For (ii) we check: (a) O−i (q̄) < 0; (b) O+
i (q) > 0; and

(c) Oi(zi) > 0. Now (a) always holds and (b) holds iff i < τ . Then for (c), write

Oi(zi) = µ− γ +
(ω + τ)µ− (1 + τ)ωγ + (ω − 1)τ ẑi

(1 + τ) log (1− ω)

+
γτ

log (1− ω)
log

[
µ− γ + τ (ẑi − γ)

(1 + τ) (ẑi − γ)

]
.

Since log (1− ω) < 0, we have O′i(zi) > 0. Given ∂ẑi/∂i < 0, we also have

∂Oi(zi)/∂i < 0. Define i∗ as the solution to Oi(zi) = 0, so Oi(zi) > 0 holds ∀i < i∗.

Hence, there is a MME iff i < min {τ , i∗}, and it is unique since O′′i (zi) < 0.

Finally, (iii) follows Proposition 2. �
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Appendix B: Calibration Formulae (for on-line publication)
Consider first the variable-cost model. Inserting q̄ and q, we get

G (q) = 1− α1

2α2

µ− q + τ (ẑi − q)
(1 + τ) (q − γ)

,

H (q) = 1− α2
1 [µ− q + τ(ẑi − q)] [µ+ τ ẑi + (q − 2γ) (1 + τ)]

4α2 (α1 + α2) (1 + τ)2 (q − γ)2 .

The fraction of monetary transactions and the markup are therefore

H (ẑi) = 1− α2
1 (µ− ẑi) [µ+ τ ẑi + (ẑi − 2γ) (1 + τ)]

4α2 (α1 + α2) (1 + τ)2 (ẑi − γ)2 ,

EGq
γ

= 1 +
α1 (µ+ τ ẑi − γ + τγ) log (1 + 2α2/α1)

2α2γ (1 + τ)
,

where ẑi is given in the text. From this we get

Li =
(1 + τ) ẑi

α1 (µ+ ẑiτ) + (1 + τ) (1 + α2γ)
,

ηi =
α1µ+ (1 + τ) (1 + α2γ)

α1 (µ+ ẑiτ) + (1 + τ) (1 + α2γ)

∂ẑi/∂i

ẑi/i
.

Consider next the fixed-cost model. Inserting q̄ and q, we get

G (q) = 1− α1

2α2

µ− δ − q
q − γ ,

H (q) = 1− α2
1 (µ− δ − q) (µ− δ + q − 2γ)

4α2 (α1 + α2) (q − γ)2 .

The the fraction of monetary transactions and the markup are

H (ẑi) =
[2α1α2 (µ− δ − γ) /δ]2/3 i2/3 − α2

1

4α2 (α1 + α2)
,

EGq
γ

= 1 +
α1 (µ− δ − γ) log (1 + 2α2/α1)

2α2γ
.

From this we get

Li =
γ +

[
α2

1δ (µ− δ − γ)2 /2α2

]1/3
i−1/3

1 + α1 (µ− δ) + α2γ

ηi =
−1

3 + 3γ
[
α2

1δ (µ− δ − γ)2 /2α2

]−1/3
i1/3

.
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Appendix D: Dynamics (for on-line publication)
First, we want to derive the average posted price in a nonstationary equilibrium.

Given the Ft(p) in (3), we can derive

F ′t(p) =
α1

2α2

φ2
t p̄t − φtγ

(φtp− γ)2 .

Then, the average posted price is

EFtp =

∫ φtp̄t

φtpt

pF ′t(p)dp =

α1
2α2

log
(

1 + 2α2
α1

)(
µ+τφt
1+τ

− γ
)

+ γ

φt
.

It is easy to verify that ∂EFtp/∂φt > 0 since µ > (1 + τ)γ under the calibrated
parameters. To derive the average transaction price, we define the CDF of nominal
transaction price distribution as

Jt (p) =
α1Ft (p) + α2

{
1− [1− Ft (p)]2

}
α1 + α2

and

EJtp =
α1 (µ+ τφt) + α2γ (1 + τ)

φt (α1 + α2) (1 + τ)
.

Similarly, one can check that ∂EJtp/∂φt > 0 under all parameter values.
The share of credit transactions is∫ p̄t

mt

dJ (p) =
α2

1

4α2 (α1 + α2) (1 + τ)2

µ− φt
φt − γ

[
µ− φt
φt − γ

+ 2 (1 + τ)

]
.

It is decreasing in φt since (µ−φt)/(φt− γ) is a decreasing function of φt. Finally,
the size of price dispersion is measured in the coeffi cient of variation ν, defined as
the ratio of the standard deviatio of F to the mean of F .

νt =

(
EFp2 − (EFp)2

(EFp)2

) 1
2

=

 α1
α1+2α2

− α21
4α22

log2
(

1 + 2α2
α1

)
[
α1
2α2

log
(

1 + 2α2
α1

)
+ γ(1+τ)

µ+τφt−γ(1+τ)

]2


1
2

,

After some algebra, one can show that ∂νt/∂φt > 0.
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